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Using the Belinsky—Zakharov generating technique and a flat metric as a seed, two- and four-
soliton solutions of the Einstein vacuum equations for the cases of stationary axisymmetric,
cylindrically symmetric, or plane symmetric gravitational fields are considered. Three- and
five-parameter classes of exact solutions are obtained, some of which are new.

I. INTRODUCTION

Among the techniques developed in recent years for the
generation of new solutions of the Einstein vacuum (and stiff
matter or Einstein-Maxwell) equations from simpler
known ones the inverse scattering method (ISM) of Be-
linsky and Zakharov' (BZ) has turned out to be one of the
most fertile. Because it applies in all cases where the space-
time manifold admits a pair of commuting non-null Killing
vectors, the BZ technique has already been used for the con-
struction of a large number of exact solutions representing
stationary axisymmetric, cylindrically symmetric, and plane
symmetric gravitational fields.>™”

In the present paper we consider the “2- and 2 X 2 soli-
ton” solutions of the Einstein vacuum equations, which can
be constructed using the BZ technique and a simple (flat)
Kasner metric as the known or ““seed” solution. This type of
diagonal seed was first used by BZ in illustrative examples of
the application of their method in the original papers cited
above. Where we differ from BZ and other authors who have
used the Kasner or other diagonal seed metrics is in treating
the three cases mentioned below in a unified manner. Thus
following the lead of Letelier,® we first develop a simplified
version of the BZ formulas for the product metric coeffi-
cients for the general “N-soliton™ solution in terms of deter-
minants of N X N matrices. Subsequently, we specialize our
results to the two-soliton case and use the method of Tomi-
tatsu® to make them applicable to the four-soliton double
poles or the two X two-soliton case as well. The application
of these results to the simple Kasner metric mentioned above
allows us to accomplish the following objectives.

First, we rederive several important solutions of the Ein-
stein vacuum equations recently discovered by other meth-
ods. These include the Chandrasekhar-Xanthopoulos® col-
liding plane-waves solution; the cosmic string plus
gravitational waves solution of Xanthopoulos'®; and the
five-parameter family of stationary axisymmetric metrics
discovered by Kinnersley and Chitre,'' which generalized
the § = 2 solution of Tomimatsu and Sato.'> There are two
points gained by this rederivation. On one hand, the interre-
lations between the above solutions are clearly brought out
and a frame of their classification is established. On the other
hand, the advantage of the BZ technique of giving all the
components of the product metric tensor by algebraic means
is made explicit. Thus the BZ technique allows us to con-
struct the Kinnersley—Chitre'' metric completely, while the
method by which this solution was arrived at originally al-
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lowed for the construction of the corresponding Ernst poten-
tial only.

The second objective accomplished in the applications
part of this paper consists of generating several classes of
new solutions, including (i) one-parameter generalizations
of the Chandrasekhar-Xanthopoulos® and Xanthopoulos!'®
metrics, and (ii) six families of pentaparametric solutions
(the Kinnersley—Chitre metric being one of them)—two in
each of the stationary axisymmetric, cylindrically symmet-
ric, and plane symmetric groups of space-times.

The plan of our paper is as follows. In Sec. II, we present
an outline of the BZ solution-generating method. In Sec. II1,
we give a set of determinantal formulas for the product met-
ric coefficients which hold in the general N-soliton case
when the seed metric is diagonal. On the basis of the above
formulas, the two-soliton product metric coefficients are
constructed in Sec. IV in terms of the two “pole trajectory”
functions and a pair of arbitrary real or complex parameters.
Section IV also covers the method by which the formulas
given in Sec. III are made applicable in the “double-poles”
case. Last, in Sec. V, we present the new solutions of the
Einstein equations that can be obtained as two- and
two X two-soliton products of the application of the results
of Sec. IV on the Kasner seed case.

Il. THE BZ SOLITON TECHNIQUE

The metric of the space-times under consideration can

be written in the form
ds* = flX’ x*) [ — e(dx*)? + (dx*)’]
+ g, (x> x)dx® dx?, (2.1)

wherea, brunfrom 1 to2and e = + 1.
Introducing the coordinates &, 7, and the function & via

(=x 4 Jex*, np=x—Jex*, (2.2)
and
a® = det(g) =det(g,,) , (2.3)

respectively, one can write the Einstein vacuum equations
for the metric (2.1) in the form

(g8 ", + (ag,g "), =0, (2.4)
(nf),=(na),/(Ina), +Tr(ag.g "Y'/ 4aa,,
(2.5a)
(nf),=na),,/(na), +Tr(ag,g""V/4aa,,
(2.5b)
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where ( ), =d,( )=d( )/dx. In particular, the trace of
Eq. (2.3) reads as

a;, =0, (2.6)
whose general solution can be given in the form
a(gm) =a(§) +b(m), (2.7)

where a, b are arbitrary functions of the indicated argu-
ments.

In the BZ approach, Eq. (2.4), which is the integrability
condition of Egs. (2.5), is replaced by the coupled “Schro-
dinger equations”

1

2a g/?.

oo
Dey= (3¢+ )r/'———(f’g_gi) ¥, (28a)
2a, /1 ag,g”!
Du=(0,+ 225, y=E2E_y )

for the 2 X 2 matrix “wavefunction” ¢, which depends on the
complex “spectral parameter” A in such a way that

1119% Y(&nA) =g(&m) .

Suppose now that ¥'” is a known solution of Egs. (2.8)
which corresponds to g in the sense of Eq. (2.9). Then, as
BZ have shown, the ansatz

v =Xy, (2.10)

together with the assumption that the ‘“‘scattering matrix”
X(&,m,4) has only simple poles in the complex A plane, leads
to a new solution of Egs. (2.8) which, thanks to Eq. (2.9),
determines a new solution of Eq. (2.4).

The poles ., k = 1,...,N of the scattering matrix X are
found to be coordiante dependent. Specifically, the pole tra-
jectories are given by

(2.9)

pi = (W, —B) + [(w, — B —a?]"?, (2.11)
where w, are arbitrary constants and
B=a(5) —b(1n) (2.12)

is the harmonic conjugate of the function a defined by Eq.
2.7).

It turns out that the functions g, (£,77), along with the
matrix '?, determine the new metric ( £,g) produced from
the seed ( £, g®) completely and only via algebraic mani-
pulations. This is made explicit in the final BZ formulas,
which read as

© N2 N N+1
f=¢fPa™"" 7
1,4
N —1
H (x —y,)z] det(T), (2.13a)
ki=1
k>1
N
ez
k=1
F—IN(k)N(I)
[gf,? L——"—] , (2.13b)
k=1 127927
where
= (up~a®) 'nOgin, (2.14a)
NP =gQnb, (2.14b)
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nF=mPMP, miP arbitrary constants, (2.14c)
M P =[yUnEp) 17, (2.144)

and c is an arbitrary real constant.

In Eqgs. (2.14) the summation convention holds for the
indices a, b, while in Eq. (2.13a) the term in square brackets
should be replaced by unity when N = 1.

1l. SOLUTIONS DERIVABLE FROM A DIAGONAL SEED

It is clear from Egs. (2.14) that the key item in the
construction of the new solution ( f,g) of Einstein’s vacuum
equations starting from the “seed metric” ( £*,g'”) is the set
of N matrices {¢'”(£,m;u, ) }: These are obtained by inte-
grating the system of equations (2.8) along the pole trajec-
tories. However, when g is not diagonal, the system (2.8) is
generally very difficult to integrate. Therefore, one usually
adopts the simplifying assumption that g is a diagonal ma-
trix, in which case ¥ can be assumed to be diagonal as well.
Integrating the trace of Eqs. (2.8) along the pole trajectories
[ we obtain

det(¥”) = 2wepsy , (3.1)
which allows us to write the matrix ¢'” in the form

PO = diag (¥, 2w, i ) (3.2)
where the function ¢, satisfies

(n¢) = [a/(a—p)](Ing?) ., (3.3a)

(Ind¢y), = [a/(a +p) g, (3.3b)

The diagonahty assumption for g s1mp1iﬁes not only
the procedure that leads to the matrix %, but the algebraic
system of Eqs. (2.13) and (2.14) as well. Thus substituting
Eq. (3.2) into Egs. (2.13), one finds that

8= Hak' {1“2(SkSI)AIJ ]gi?), (3.4a)
k kI \ 00,

g || {1-3 (55) 8] e b
e I\ 00

812 = —(L) Hak 2( % )Akl ) (3.4¢c)

Je /% i\ 0,0
where

o= (u/a), (3.5a)

S, =q,89¢¥. %0, , gq, arbitrary constants,  (3.5b)

A =(ScS 1)/ (oo, — 1), (3.5¢)

and all the sums and products run from 1-N. Finally, the
identities

det(y:.6, +Ay) = (1 + Y 7bihg ‘) det(A), (3.6a)
kI

2
det(7,8,Au) = (H yk) det(A) (3.6b)
k

allow us to write Eq. (3.4) in the determinantal form (to be
compared with the third paper listed in Ref. 3)

(—1)
g
H k L(o) gOI’

g = (3.7a)
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N L
gn=e"|] o '|=2g2, (3.7b)
k=1 ()
a | & L
82 =— o , (3.7¢)
N Ve "1;[1 * L,
where
58S, +1
L =detAgs , A(fs)kIE[ (0401) 75,51 + , (3.8a)
o0 —1
with6 =0, + 1 and
L=det(A ) —det[A gy + (Si/00,)] . (3.8b)

Similarly, the metric coefficient fcan be written in the form
@~ "2 0, |

[Hﬁ,l= (o — ‘71)2} [Hf=1 Sk]

k>1

Lo, f©. (3.9)

f=c

Before concluding this section, let us note that the prod-
uct metric, given by Egs. (3.7)-(3.9), depends on 2N pa-
rameters—the arbitrary constants w, and g,. The w, deter-
mine the pole trajectories g, via Eq. (2.9) and are
incorporated in the function o, accordingto Eq. (3.5a). The
g, appear as multiplicative constants in the functions S, de-
fined by Eq. (3.5b). Thus one can make the functions S,
vanish by setting all the g, ’s equal to zero. According to Eq.
(3.8b) this choice leads to a diagonal product metric and
therefore, it represents the easiest application of the BZ for-
mulas. A diagonal product metric is also obtained if we let all
the (g2 ')’s go to zero. Such diagonal N-soliton metrics were
given and studied by Carr and Verdaguer for the case where
the Kasner cosmological model serves as seed.” In the gen-
eral nondiagonal case, the functions S, depend on the ¢, ’s;
the latter are obtained by integrating Egs. (3.3). Assuming
that the diagonal seed metric is written in the form

g% = diag(a/\e) (ee®e?), (3.10)

one can obtain the S; functions more directly from the
expression
(Inoy) .
——2 d¢ +
(Ina), ¢’g ¢ (Ina).
which results by combining Eqgs. (3.3), (3.5a), and (3.5b).
Still, specific applications of the BZ technique can be carried
to completion only by assuming simple expressions for the
function ¢, which determines the g, part of the seed metric.

(neoy)

InS, = — 2 g dy, (3.11)
7

IV. TWO- AND TWO X TWO-SOLITON SOLUTIONS
A. A pair of simple poles

Let us now assume that the scattering matrix X has only
two simple poles in the complex A plane, located at w, and
w,, respectively. Then Egs. (3.7)-(3.9) and simple algebra
give the following expressions for the general two-soliton
solution derivable from a diagonal seed:

& = [(o,0,— 1)2(U1S2 - 02S1)2 + (o — ‘72)2

X (0,0, + §,8,)%] Zg\?, (4.1a)
8 = [(0y0, — 1)? (0S| — 055,)* + (0, — 0,)?
X (14 0,0,5,5,)%] Zg5y , (4.1b)
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812 =2(w, — w,)0,0,[ (0,8, — 0,5,) (0,0, + §,5,)

+ (08, — S (1 + 0,0,5,S5,)] Z, (4.1¢)
S=const[0,0,5,5,(0F — 1)(03 —DZ]7Y?, (4.1d)
where

Z7'=|00,|[ (0, — 0,)*(1 + 5,5,)°
+ (0,05, — D)3(S; — S,)?] . (4.2)

Inderiving Eqs. (4.1¢) and (4.1d) we made use of the identi-
ty

a(o; —o0;) (0,0, — 1) = 2(w; — w;)o,0;, (4.3)

which follows from Eq. (2.11), and constant quantities were
absorbed in the multiplicative constant ¢ of Eq. (3.9).

At this point, let it be noted that according to Egs.
(2.11) and (3.5a),

o o,"’ =1 (nosumover k), (44)

where of’ denote the o, functions corresponding to the
( + ) choice of sign in Eq. (2.11). Similarly, Eq. (3.11) im-
plies the relation

S8 =D, (4.5)
with D, an arbitrary constant, between the S { *’ functions
that correspond to the o * ”’s, as in Eq. (3.5b). When rela-
tions (4.4) and (4.5) are taken into account, it is an easy

matter to verify that the rhs of Egs. (4.1) are invariant under
the transformation

{O.J(+)’Sj(+)}_,{0.]§~) — I/U]g+),S1§—) - _ I/S;"')}.
(4.6)
Therefore, any choice of sign in Eq. (2.11) implies no loss of
generality.
On the other hand, the poles w,, w, must both be real or

complex conjugate. Therefore, there is no loss of generality if
we take

w, = —w,=w, whenw,eR, (4.7a)

(4.7b)
since this choice implies no more than a translation in the

(a/+e,B) plane. Correspondingly, the pole trajectories can
be chosen to be

u=(w—pB) + [(w—-PpB)?—a?1'"?,

w, =w,=iw, whenw,eC,

(4.8)
o= — (wW+ B+ [(w+ B —a?]'?,
when w, €R and
By =y = (iw—PB) + [(w—B)* —a?]'? (4.9)

where w, €C.

The expressions obtained thus far for the N-soliton solu-
tion are given in terms of the real-valued harmonic conjugate
functions (a/+€,8) which can be retained as the coordinate
system replacing the original (x3,x*) or (&) system. How-
ever, in the two-soliton case, it turns out to be much more
convenient to introduce the coordinates (x, y) defined by

B=uwxy,

a [w[e(l —x)(1—=y»1"?, when w,eR, 410
ﬁ_ wle(1 +x2)(y*—1)1"%, when w,eC. (4.10)
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Substituting Egs. (4.8) and (4.10) into (3.10a), we find that
o= (1+x)(1—=p)/[(1 —x)(1 ) K
o= (x— D1 —=p)/[(1 =x*)(1 = y)]'?

when w, €R. In order to obtain the corresponding o, ’s when
w,€C one can simply use the mapping

(4.11)

(x, y;w) = ( — ix, y;iw):(real poles case)
- (complex poles case) ,
which is implicit in Eq. (4.10).

(4.12)

B. A pair of double poles

The BZ formulas for the N-soliton solution are immedi-
ately applicable only when the N poles are distinct. Thus
when two or more of the w,’s coincide one has to turn to the
use of limiting procedures in order to find the appropriate
version of the above formulas.

Consider, for example, the case where both w, and w, of
Sec. IV A are double poles: By this we mean the case where
the scattering matrix has four simple poles and we let
(w;,w,) - (wy,w,). We then turn to Eqgs. (3.7)—(3.9) in or-
der to obtain the coefficients ( f,g) of the new metric. Note,
however, that if we let (03,0,)—(0,0,) and
(S5,84) = (5),5,) as (ws,w,) — (w,,w,), then the four-soli-
ton [4X4] matrix A, ; will have pairs of equal rows and
columns. As a result, the L functions will vanish, making
Egs. (3.7) and (3.9) inapplicable.

Therefore, let us consider the alternative® where
o, =0\, 0,=0") and as (w;,w,) - (W,w,):

(03,04)— (017 ,057)
and
(S3:8) = (S{’=D/S{*’ ,S{>=D,/Si*’),
(4.13)

where D,’s are arbitrary constants. The problem that now
arises for the [1,3], [2,4] elements of the symmetric [4 X 4]
matrices A ;,; is overcome by letting the D;’s go to — 1.
Therefore, let us consider

D = -1 +§i(wi+2 —-w;),

wherei = 1,2 and £, are arbitrary constants. Then using Egs.
(3.15a), (4.8), (4.9), and (4.13) we find that the limit of
A5y a8 (w3,wy) —~ (wy,w,) is the symmetric matrix E ) ;,
where

(4.14)

(4.15a)
(4.15b)

E(&)kl = A(&)kl’

Eski2ir2 = — (020 72(SeS) " "Asyir »

a(l -1 ains
E ;= — [—(5];{&] [fl +—%] — 6, (4.15¢)

Esa=0,"%8; (0, — 0))"H(d}S, —05S,), (4.15d)
E5 =017 %87 (0, —0) " (dES, — 03S,),  (4.15¢)
-1
E 50 = __[_M [§2+a_(1“‘g_2)]_5’ (4.15f)
dw, dw,

where k, / run from 1-2. Moreover, from Egs. (2.9) and
(3.5a) it easily follows that
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d(lna,)
dw,

_ 20y
a(di —1)
Thus the equality of the pairs of rows or columns of A 4, in
the limit (w,,w,) —» (w,,w,) has been broken and, once the
functions S, have been determined, Eqgs. (4.15) and (4.16)

provide the elements necessary for calculating the L func-
tions of the four-soliton formulas.

(4.16)

V. APPLICATIONS
A. A pair of simple poles

As a first application of the results obtained in Sec. IV,
let us consider the two-soliton solutions that can be derived
from the metric

ds’ = — e(dx*)? + (dx*)? + e(dx")?

+ (a(x*x*)Ve)*(dx?)?, (5.1
where (a/y€) is any real solution of Eq. (2.6).
The metric (5.1) results from taking
¢ = — In(a/Ve) (5.2)

in Eq. (3.10), achoice that is in accord with the vacuum field
equations (2.4). Substitution of Eq. (5.2) into (3.11) leads
to the relation

Sk = 0x0x » (5.3)
which makes explicit the simplicity of expression (5.2) for ¢
from the standpoint of the soliton technique.

By choosing the value of € and the specific form of @ one
specifies the “gauge.” Thus we will distinguish the following
cases.

(i) For the axisymmetric gauge,

Q, arbitrary constants,

e=—1 ’ (xl’xZ’x3’x4) = (t,¢7»Z»P) ’
5.4
a=ip, B=z. ) (3.4)
In this case Eq. (5.1) becomes P
ds’ = —dt? +dp* + p*dp? + d2*, (5.5)

which makes the range and meaning of the coordinates evi-
dent.

(ii) For the plane symmetric gauge,

e=1, (XX xXx%)=x,y21"),
B=2z.
Now, the flat metric in Eq. (5.1) can be considered to repre-
sent a Kasner or Bianchi type I universe.

(iii) For the cylindrically symmetric gauge,

I (5.6)

e=1 ’ (x]’x21x3’x4) = (Z,¢7,P,t) ’

a=p, B=t.
As in the axisymmetric gauge, in this case the seed metric is
also the Minkowski metric in cylindrical coordinates. How-
ever, the product metric will be different. In the present case
the two-soliton solution will preserve the cylindrical symme-
try of the Minkowsi space-time, while in the axisymmetric
gauge it is the stationary axially symmetric character of the
original metric that will be preserved.

Returning to Eq. (5.3), let us note that the resulting
metric will be real provided that Q, and Q, are chosen to be

(5.7)
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real or complex conjugate when the poles w, and w, are real
or complex conjugate, respectively. In the real poles case, let
us introduce the parameters p, ¢, and / via the relations

iz_ Q1+Q2, P_ QI_QZ’ £=Q1Q2—1'
q 1400, ¢ 1+00, g @@ +1
(5.8)
Then
F4+p=1+1%. (5.9)

In order to cover the complex poles case, all we need do is let
p—ipin Eq. (5.8); then (5.9) is replaced by

f=const[X/(x*+ )],

X=(—-gqp)?*+ (1—px)?,

Y=g(¥ -1 +px*+1),

(g_)z g =@ +x)+p(x*+1)(g—ly)
2w @y —Dp*(xP+ 1)

gV’ =DU—px+1’=lp)+P*(y—DE*+1)  (¢g=D

F-p=1+1%. (5.10)

1. Complex conjugate poles

Let us now substitute Eq. (5.3) into Eq. (4.1) and con-
sider the case of complex w, first. Taking into account the
p—ip version of Eq. (5.8) we find that the product metric
can be written in the form

ds® =f[ — e(dx*)* + (dx*)?] + e(Y /X) [dx' — w dx*}?
+ (a¥/€)(X /Y)(dx*)?, (5.11)

where

(5.12a)
(5.12b)
(5.12¢)

1
p Py —1)+p (P + 1)

Depending on the gauge, the line element given by Eqgs.
(5.11) and (5.12) represents the following three classes of
space-times.

(i) The a’> m?*Kerr—NUT (Newman—Unti-Tamburino)
metrices. This can be made explicit by first gauging away the
constant 2p~'(g — /) in the second version of Eq. (5.12d)
by letting x' >x' + 2p~'(g — I)x* and then choosing the
axisymmetric gauge.

Inverting Eq. (4.10) we obtain

ux=r,+r_, 2iwy=r,—r_, (5.13)
where
ro =(z+w)*+p*]"2. (5.14)

Equation (4.10) also gives the restriction | y| <1 for the
range of the p coordinate. The asymptotic form of the metric
shows that one must choose the ratio (w/p) such that

(5.15)

where m is the mass parameter, while the arbitrary constant

figuring in Eq. (5.12a) must be taken to be equal to p~2.

Substituting Eq. (5.15) into (5.10) one obtains

w= —mp,

w= (a>—m>—b?)"?, (5.16)
where
a=qgm, b=im. 5.17)

Finally, by introducing the coordinates (7,8) via the re-
lations

(5.18)

one obtains the Boyer-Linquist form of the Kerr—NUT met-
ric, whereby a and b are seen to stand for the angular mo-
mentum and NUT parameter, respectively.

The derivation of the a*> > m? Kerr—~NUT solution along
the lines described above was obtained by BZ as one of the
first applications of their ISM."

wx=r—m, y=cos@
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(5.12d)
p

i

(ii) Gravitational solitons propagating in a Kasner uni-
verse. When the plane symmetric gauge is chosen, Eq. (4.10)
gives

Qux=r,+r_, 2iwpy=r, —r_,

r, =[(z + iw)? —¢?]'/?

and the metric given by Eqgs. (5.11) and (5.12) represents a
pair of gravitational solitons propagating along opposite di-
rections of the z axis. The solitons converge if the Kasner
background is collapsing, i.e., for ze( — «,0), or diverge if
the universe is expanding, i.e., for #€(0, % ). This family of
solutions was also first obtained by BZ.'

(iii) Cylindrical gravitational waves reflecting off the
symmetry axis. In the cylindrically symmetric gauge Eq.
(4.10) gives

(5.19)

wx=r, +r_,

ro=[(t+iw)*—p*12.

As in the axially symmetric case, the metric is easily regular-
ized on the axis by gauging away the constant term in the
second version of Eq. (5.12d). As shown by Economou and
Tsoubelis,’ the solution that is obtained in this fashion repre-
sents a solitary gravitational wave which, having started
from p— o at t— — o, reaches near the symmetry axis
p = 0 and reflects from it at = 0.

In the present case one can choose the arbitrary constant
in the expression for the metric coeffficient f to be different
from p—?. Then the axis region is characterized by an angle
deficit and the solution can be interpreted as a gravitational
wave interacting with a cosmic string which occupies the
axis of symmetry.

The / = 0 subclass of cylindrically symmetric solutions
given by Eqs. (5.11) and (5.12) was first obtained by Xanth-
opoulos'® using a nonsolitonic technique. In fact, the whole
class of solutions under consideration retains the Petrov type

2iwy = —r_,
=Ty =T (5.20)
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D character of the Kerr-NUT metric and therefore, must be
a member of the Kinnersley'? family of solutions.

On the other hand, Letelier® has obtained a family of
cylindrically symmetric solutions using the BZ ISM and a
diagonal seed. Because the final expressions are very compli-
cated and depend heavily on the gauge functions, it would
have been very hard for us to check if the class of metrics
presented above is contained in the Letelier family of solu-
tions.

2. Real poles

As noted in Sec. IV A, the metric coefficients for the
w,€R case are obtained from the ones corresponding to
w, €C by the substitution (x,w,p)— (ix, — iw, — ip). Thus
when w, €R, Eq. (4.10) and its inverse read as

a/Je=wle(1 —x*)(1 =312, B=wxy (5.21)

and
2ux=r_+r_,
ry =lB+w)’—a’1'?,

respectively. Similarly, Eq. (5.12) becomes, in this case,

wy=r, —r_,
M (5.22)

f=const[X/(x* —y%1, (5.23a)
X=U-q)*+ (1 —px)?, (5.23b)
Y=pP(x*—1)+4(y =1, (5.23¢)

(@/2w) = — (pY) " 'g(1 —px +1* —Ig) (1 —*)
+Ip(1—p) (1 —x)] —p~'(g—D. (5.23d)
The line element given by Egs. (5.11) and (5.23) corre-
sponds to the following classes of space-times.
(i) The Kerr—NUT m?> a? solutions. This class of solu-
tions is obtained in the axisymmetric gauge (¢ = — 1). Let

efi=p=w[(x*—1)(1—-p))"?, B=z=uwxy (524)
and
w=(m?>—a®+ b2, (5.25)

with a, b as in Eq. (5.17). Choosing the arbitrary constant
that figures in Eq. (5.23a) to be equal to p~? again, we have
in Egs. (5.11) and (5.23) the Kerr—NUT m? > a® metrics
either in the Weyl normal coordinates (p,z) or the prolate
spheroidal coordinates (x, y). In the latter case the coordi-
nate patch consists of the strip xe(1,00), ye(—L,1). In
terms of the Boyer-Lindquist coordinates (7,0) defined by
Eq. (5.18), this strip corresponds to the region
r>r,=m +w, i.e., to that part of space-time that lies out-
side the event horizon.

(ii) Colliding plane waves. In the plane symmetric gauge
Eq. (4.10) becomes

a=t=w[(1—x)(1=y)1"?, B=z=wxy. (5.26)
Thus the metric given by Egs. (5.11) and (5.23) is real in
those regions of the (x, y) plane where either |x| <1 and
| ¥l <1or |x|>1and | y| > 1. On the other hand, according
to Eq. (5.23a) these regions are bisected by straight lines
along which the metric coefficient f is singular. This implies
that having chosen the metric in any one of the above re-
gions, one must determine a well-defined process of continu-
ing it beyond the boundaries. For example, letw = — |w|in
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Eq. (5.26) and consider the interior of the triangle defined
by the points (0,0), (1,1), and ( — 1,1) of the (x, y) plane.
The corresponding region in the (#,z) plane is bounded by
thelinest =Oandt = — |w| 4+ z. As shown by Chandrasek-
har and Xanthopoulos,® if one assumes that the space-time
metric in this triangular region is the one defined by Egs.
(5.11) and (5.23), with / = 0, then for ¢ <0, one can extend
it beyond the lines = — |w| + z using the Khan—Penrose'
technique. The resulting solution represents gravitational
plane waves which collide at t = — |w| and Egs. (5.11) and
(5.23) give the metric in the region of the waves’ interaction.

Exactly in the same way, one can extend the general/ #0
metric and verify that the resulting metric again represents
collision of gravitational plane waves. We note here that this
metric can be obtained from the / = 0 case by an application
of the hyperbolic version of Ehlers transformation. In fact,
Ernst-Garcia—Hauser'®> (EGH) have recently obtained new
solutions by applying this transformation to some known
colliding wave metrics, including the Chadrasekhar—Xanth-
opoulos,’ Nutku—Halil,'® and Ferrari~Ibanez-Bruni'’ solu-
tions, which can all be generated from an appropriate
Kasner seed metric using the BZ soliton technique. How-
ever, as pointed out by Letelier’ and manifest in our case, this
transformation is built into the BZ method and if one consid-
ers the general solutions one immediately covers the EGH
generalizations.

(iii) Cylindrical waves. In the cylindrically symmetric
gauge Eqgs. (5.21) gives

a=p=w[(1-x)(1-p)1"2, B=t=wxy. (5.27)

Again one is restricted to regions where either |x| <1 and
|yl <lor|x|>1and |y|> 1. In terms of the (#,p) coordi-
nates, the inverse of Eq. (5.27), which reads as

Qux=r_+r_, 2wy=r,—r_,

ri E[(tiw)z—pzll/zy

shows that the solution given by Eqs. (5.11) and (5.23) is
valid only in the three disconnected regions I, II, and III
bounded by the symmetry axis p=0 and the lines
t=1lw|+p t= + |w| +p,andt = — |w| — p, respective-
ly. In each of the regions I-III we have a metric representing
cylindrical gravitational waves since the metric is time-de-
pendent and cylindrically symmetric. However, one has to
determine the fashion in which the metric extends beyond
the |x| = | y| lines before one has a clear picture of the phys-
ical interpretation of the line element given by Eqs. (5.11)
and (5.23) in the cylindrically symmetric gauge. Work by
the present authors regarding this point is under progress.

(5.28)

B. A pair of double poles

Starting with the same seed metric that was used in Sec.
V A, a whole family of new solutions is obtained by simply
assuming that the poles w, and w, are now double poles. This
follows from the fact that in this case the results of Sec. IV B
apply, whereby two more parameters enter the picture,
namely &, and &,. Just as the Q,’s of Eq. (5.3), these param-
eters must be chosen to be either real or complex conjugate
when the poles (w,,w,) are real or complex conjugate, re-
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spectively, because otherwise the product metric coefficients
will not be real.

Let it be noted that according to Egs. (4.15), the ele-
ments of the pertinent [4 X 4] matrices {E_4, } have already
been expressed in terms of the known functions (o,,0,) and
the four parameters (Q,,0,,£,,£,). Therefore, the calcula-
tion of the metric coefficients corresponding to the four-soli-
ton case at hand is a matter of straightforward, if tedious,
algebra. Since the resulting expressions for the intermediate
L functions are very lengthy, we restrict ourselves to present-
ing only the product metric coefficients. As in the simple
poles case presented in Sec. V A, the double-poles’ solutions
split into two branches corresponding to the w, ’s being real
or complex conjugate, respectively, as follows.

1. Complex conjugate poles

When w, €C, the product metric is given by Eq. (5.11)
where, now,

f=const[ X /(x*+y")*], (5.29a)
Y=E*+D?, (5.29b).
X=F?4+G?, (5.29¢)
(w/4w) = (FH + GR)/Y + const, (5.29d)
E=p’(xX*+ 1)’ —¢(y" —1)°

— (P 4+ +pH)(x*+ %), (5.29%)

D=2[(x2+ 1)(y* — D]VH{ = pg(x* + y*) + (2 — x?)

X (gr — Ips) — 2zy(gs + Ipr)}, (5.29f)
F=(+ 1)1 —px)?— (y* — (I — gp)?

— 1+ + {1+ (P + )2+ p)

+2(rx+s0)}, (5.29g)
G=2(x*+ D{{(p + Nx+ 1 — gp)

+p(ry —sx)(g— Iy}

+2(y* = D{[(g + Is)y + Irx} (1 — px)

+q(y—s0)(p+x)}, (5.29h)

H=q(p+x)(y*— 1) —pl(g—(x*—1)

— (@ + ) {[r(g— ) +sp(gp = D]1(x¥* + 1)

+ [gr(1 —px) — Is(x+p)1(y*— 1)}, (5.291)
R=py(x*—1) —qlx(y*— 1)

+2px[pPP(x* + 1) + ¢*(y* — D]

+ A+ + ) [y + 1) +sx(y* — D],

(5.29))

and the real parameters r and s stand for the combinations

r=(w/2), +&), (5.30a)

s=(w/20) (& — &) . (5.30b)

Except for very particular choices for the values of the
parameters involved, the metric coefficients given by Eqgs.
(5.29) share with their two-soliton analogs the same behav-
ior on the (z,p) or (x, y) plane; therefore, the physical inter-
pretation of the latter as described in Sec. V A 1 applies here
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as well. However, in the present case, the corresponding
space-time structure is much richer than the one found in the
two-soliton solutions. The solutions belonging to the axi-
symmetric gauge, for example, give the analog of the Kerr
a*> m® metric for the Kinnersley—Chitre!" class of station-
ary axially symmetric space-times discussed below. How-
ever, a detailed analysis of the above solutions is required
before an exact physical interpretaion is put forward: Since
the same is true for the solutions that follow, it should be
obvious that such an analysis cannot be presented in the
context of the present paper.

2. Real poles

The metric coefficients of the four-soliton solution that
results from the choice w,€R can be obtained from those
corresponding to the case w, eC by the substitution

(x,w,p,r,s) - (ix, — iw, — ip, — ir, — s5) . (5.31)

Equation (5.31) is a consequence of the pertinent formulas
and a simple extension of the analogous result obtained in
the two-soliton case. However, since no complete list of these
coefficients has been published thus far, we prefer to give
them here explicitly. Again, the line element has the form
given by Eq. (5.11) where, now,

S=const[X/(x* — y*)*], (5.32a)
Y=E2?_D?, (5.32b)
X=F4G2, (5.32¢)
(w/4w) = — (FH 4+ GR)/Y + const, (5.32d)
E= —p(*— 1) — (> —1)2

+ (P =) (1 —p?)(x2 —y*)?, (5.32e)

D=2[(x*— 1)(1 - y")]"Hpg(x* = y*) + (y* + x*)

X (gr+ Ips) — 2xy(gs + Ipr)}, (5.32f)
F=— (X —1)(1~-px)?—(y*—1)

X (I — g+ (1 —p»)(x* —)?)

X{1+ (7 =) (& — ") +20x — )},
G= -2 = D{[(p+ rNx — syl

X(I—gqy) —p(ry —sx)(g— )}

+2(y*— D{l(g—I5) y+ Irx] (1 — px)

+q(ry—sx)(x—p)},
H=q(x—p)()*'— 1) +plg—bh)(x*—1)

+ & =y {lr(g — Iy) —sp(gyp — D1(x* — 1)

+ [gr(1 — px) — Is(x — p)1(1 — )},
R=—py(x*—1) —qglx(y*— 1)

+ 2x[p*(x* — 1) + ¢*(y* — 1]

-1 =)=y p(x*—1) —sx(y* — 1)].

(5.32))

Depending on the gauge, the following classes of solu-
tions can be distinguished.

(i) In the axisymmetric gauge Eqs. (5.32) give the Kin-
nersley—Chitre'' class of metrics: The latter represents a

(5.32g)

(5.32h)

(5.321)
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two-parameter generalization of the 6 =2 Tomimatsu—
Sato'? class and was discovered using the symmetry trans-
formations that leave the field equations invariant. Our
method of deriving the same class of solutions verifies the
Tomimatsu conjecture® that the Kinnersley-Chitre'' met-
rics should be the product of letting the two poles that appear
in the derivation of the m* > a* Kerr metric via the BZ tech-
nique to become double. Moreover, our method makes ex-
plicit a particular advantage of the BZ technique over the
one used by Kinnersley and Chitre. This consists of the fact
that the BZ method leads directly to all the components of
the product metric, while the Kinnersley—Chitre method
leads to the Ernst potential, which implies that some integra-
tions must be performed before the metric is specified com-
pletely.

(i1) In the cylindrically symmetric gauge Egs. (5.32)
represent ‘“‘cylindrical waves.”

(ii1) In the plane symmetric gauge Eqs. (5.32) repre-
sent “interacting plane waves.” The necessity of the quota-
tion marks derives, in cases (i) and (ii) from the fact that the
corresponding solutions are valid in disconnected space-
time regions that are separated from each other by the null
hypersurfaces x> = y* along which f is singular. Therefore,
no claim to a concrete physical interpretation can be sub-
stantiated before any one of the above regions is appropri-
ately extended. Given that Chandrasekhar and Xanthopou-
los® have already shown that such an extension is not
possible in the plane-waves version of the Tomimatsu-Sato'?
solution using the well-known Khan-Penrose technique, it
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seems that the five-parameters family presented above can-
not fare better.
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